3.353 \(\int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx\)

Optimal. Leaf size=322 \[ \frac {\sqrt {x^4+3 x^2+4} x}{5 \left (x^2+2\right )}+\frac {1}{5} \sqrt {\frac {11}{35}} \tan ^{-1}\left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {x^4+3 x^2+4}}\right )-\frac {11 \sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{75 \sqrt {x^4+3 x^2+4}}+\frac {9 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{25 \sqrt {2} \sqrt {x^4+3 x^2+4}}-\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{5 \sqrt {x^4+3 x^2+4}}+\frac {187 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \Pi \left (-\frac {9}{280};2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{525 \sqrt {2} \sqrt {x^4+3 x^2+4}} \]

[Out]

1/175*arctan(2/35*x*385^(1/2)/(x^4+3*x^2+4)^(1/2))*385^(1/2)+1/5*x*(x^4+3*x^2+4)^(1/2)/(x^2+2)+1/30*(x^2+2)*(c
os(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticF(sin(2*arctan(1/2*x*2^(1/2))),1/4*2
^(1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)+187/1050*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/
2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticPi(sin(2*arctan(1/2*x*2^(1/2))),-9/280,1/4*2^(1/2))*((x^4+3
*x^2+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)-1/5*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*
arctan(1/2*x*2^(1/2)))*EllipticE(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*2^(1/2)*((x^4+3*x^2+4)/(x^2+2)^2)^(
1/2)/(x^4+3*x^2+4)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 322, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1208, 1197, 1103, 1195, 1216, 1706} \[ \frac {\sqrt {x^4+3 x^2+4} x}{5 \left (x^2+2\right )}+\frac {1}{5} \sqrt {\frac {11}{35}} \tan ^{-1}\left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {x^4+3 x^2+4}}\right )-\frac {11 \sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{75 \sqrt {x^4+3 x^2+4}}+\frac {9 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{25 \sqrt {2} \sqrt {x^4+3 x^2+4}}-\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{5 \sqrt {x^4+3 x^2+4}}+\frac {187 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \Pi \left (-\frac {9}{280};2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{525 \sqrt {2} \sqrt {x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[4 + 3*x^2 + x^4]/(7 + 5*x^2),x]

[Out]

(x*Sqrt[4 + 3*x^2 + x^4])/(5*(2 + x^2)) + (Sqrt[11/35]*ArcTan[(2*Sqrt[11/35]*x)/Sqrt[4 + 3*x^2 + x^4]])/5 - (S
qrt[2]*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/(5*Sqrt[4 + 3*x^2 +
x^4]) + (9*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(25*Sqrt[2]*Sqrt
[4 + 3*x^2 + x^4]) - (11*Sqrt[2]*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]],
1/8])/(75*Sqrt[4 + 3*x^2 + x^4]) + (187*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticPi[-9/280, 2*Arc
Tan[x/Sqrt[2]], 1/8])/(525*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1208

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Dist[(e^2)^(-1), Int[(c*d -
 b*e - c*e*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] + Dist[(c*d^2 - b*d*e + a*e^2)/e^2, Int[(a + b*x^2 + c*x^4
)^(p - 1)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && IGtQ[p + 1/2, 0]

Rule 1216

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1706

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, -Simp[((B*d - A*e)*ArcTan[(Rt[-b + (c*d)/e + (a*e)/d, 2]*x)/Sqrt[a + b*x^2 + c*x^4]])/(2*d*e
*Rt[-b + (c*d)/e + (a*e)/d, 2]), x] + Simp[((B*d + A*e)*(A + B*x^2)*Sqrt[(A^2*(a + b*x^2 + c*x^4))/(a*(A + B*x
^2)^2)]*EllipticPi[Cancel[-((B*d - A*e)^2/(4*d*e*A*B))], 2*ArcTan[q*x], 1/2 - (b*A)/(4*a*B)])/(4*d*e*A*q*Sqrt[
a + b*x^2 + c*x^4]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx &=-\left (\frac {1}{25} \int \frac {-8-5 x^2}{\sqrt {4+3 x^2+x^4}} \, dx\right )+\frac {44}{25} \int \frac {1}{\left (7+5 x^2\right ) \sqrt {4+3 x^2+x^4}} \, dx\\ &=-\left (\frac {2}{5} \int \frac {1-\frac {x^2}{2}}{\sqrt {4+3 x^2+x^4}} \, dx\right )-\frac {44}{75} \int \frac {1}{\sqrt {4+3 x^2+x^4}} \, dx+\frac {18}{25} \int \frac {1}{\sqrt {4+3 x^2+x^4}} \, dx+\frac {88}{15} \int \frac {1+\frac {x^2}{2}}{\left (7+5 x^2\right ) \sqrt {4+3 x^2+x^4}} \, dx\\ &=\frac {x \sqrt {4+3 x^2+x^4}}{5 \left (2+x^2\right )}+\frac {1}{5} \sqrt {\frac {11}{35}} \tan ^{-1}\left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {4+3 x^2+x^4}}\right )-\frac {\sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{5 \sqrt {4+3 x^2+x^4}}+\frac {9 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{25 \sqrt {2} \sqrt {4+3 x^2+x^4}}-\frac {11 \sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{75 \sqrt {4+3 x^2+x^4}}+\frac {187 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \Pi \left (-\frac {9}{280};2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{525 \sqrt {2} \sqrt {4+3 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.25, size = 283, normalized size = 0.88 \[ -\frac {\sqrt {1-\frac {2 i x^2}{\sqrt {7}-3 i}} \sqrt {1+\frac {2 i x^2}{\sqrt {7}+3 i}} \left (\left (-35 \sqrt {7}+7 i\right ) F\left (i \sinh ^{-1}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+35 \left (\sqrt {7}+3 i\right ) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+88 i \Pi \left (\frac {5}{14} \left (3+i \sqrt {7}\right );i \sinh ^{-1}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )\right )}{350 \sqrt {2} \sqrt {-\frac {i}{\sqrt {7}-3 i}} \sqrt {x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[4 + 3*x^2 + x^4]/(7 + 5*x^2),x]

[Out]

-1/350*(Sqrt[1 - ((2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[1 + ((2*I)*x^2)/(3*I + Sqrt[7])]*(35*(3*I + Sqrt[7])*Ellip
ticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + (7*I - 35*Sqrt[7])*Ellipti
cF[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + (88*I)*EllipticPi[(5*(3 + I*
Sqrt[7]))/14, I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])]))/(Sqrt[2]*Sqrt[(-I
)/(-3*I + Sqrt[7])]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {x^{4} + 3 \, x^{2} + 4}}{5 \, x^{2} + 7}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{4} + 3 \, x^{2} + 4}}{5 \, x^{2} + 7}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7), x)

________________________________________________________________________________________

maple [C]  time = 0.12, size = 386, normalized size = 1.20 \[ \frac {32 \sqrt {\frac {3 x^{2}}{8}-\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \sqrt {\frac {3 x^{2}}{8}+\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \EllipticE \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{5 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (i \sqrt {7}+3\right )}+\frac {32 \sqrt {\frac {3 x^{2}}{8}-\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \sqrt {\frac {3 x^{2}}{8}+\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \EllipticF \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{25 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {32 \sqrt {\frac {3 x^{2}}{8}-\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \sqrt {\frac {3 x^{2}}{8}+\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \EllipticF \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{5 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (i \sqrt {7}+3\right )}+\frac {44 \sqrt {\frac {3 x^{2}}{8}-\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \sqrt {\frac {3 x^{2}}{8}+\frac {i \sqrt {7}\, x^{2}}{8}+1}\, \EllipticPi \left (\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, x , -\frac {5}{7 \left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right )}, \frac {\sqrt {-\frac {3}{8}-\frac {i \sqrt {7}}{8}}}{\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}}\right )}{175 \sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, \sqrt {x^{4}+3 x^{2}+4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x)

[Out]

32/25/(-6+2*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^
2+4)^(1/2)*EllipticF(1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2))-32/5/(-6+2*I*7^(1/2))^(1/2)*(1+3/
8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)/(I*7^(1/2)+3)*EllipticF
(1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2))+32/5/(-6+2*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1
/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)/(I*7^(1/2)+3)*EllipticE(1/4*(-6+2*I*7^(1/2)
)^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2))+44/175/(-3/8+1/8*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+
3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticPi((-3/8+1/8*I*7^(1/2))^(1/2)*x,-5/7/(-3/8+1/8*I*
7^(1/2)),(-3/8-1/8*I*7^(1/2))^(1/2)/(-3/8+1/8*I*7^(1/2))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x^{4} + 3 \, x^{2} + 4}}{5 \, x^{2} + 7}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {x^4+3\,x^2+4}}{5\,x^2+7} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2 + x^4 + 4)^(1/2)/(5*x^2 + 7),x)

[Out]

int((3*x^2 + x^4 + 4)^(1/2)/(5*x^2 + 7), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )}}{5 x^{2} + 7}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+3*x**2+4)**(1/2)/(5*x**2+7),x)

[Out]

Integral(sqrt((x**2 - x + 2)*(x**2 + x + 2))/(5*x**2 + 7), x)

________________________________________________________________________________________